Date: Thursday, September 24, 2020
Start Time: 10:00 am
End Time: 10:30 am
There is an increasing need to bring machine learning to a wide diversity of hardware devices. Current frameworks rely on vendor-specific operator libraries and optimize for a narrow range of server-class GPUs. Deploying workloads to new platforms — such as mobile phones, embedded devices, and accelerators — requires significant manual effort. In this talk I will present our work on the TVM stack, which exposes graph- and operator-level optimizations to provide performance portability for deep learning workloads across diverse hardware back-ends. TVM solves optimization challenges specific to deep learning, such as high-level operator fusion, mapping to arbitrary hardware primitives and memory latency hiding. It also automates optimization of low-level programs to hardware characteristics by employing a novel, learning-based cost modeling method for rapid exploration of optimizations.