Date: Tuesday, September 15, 2020
Start Time: 1:30 pm
End Time: 2:00 pm
The increasing usage of convolutional neural networks (CNNs) in various applications on mobile and embedded devices and in data centers has led researchers to explore application specific hardware accelerators for CNNs. CNNs typically consist of a number of convolution, activation and pooling layers, with convolution layers being the most computationally demanding. Though popular for accelerating CNN training and inference, GPUs are not ideal for embedded applications because they are not energy efficient. ASIC and FPGA accelerators have the potential to run CNNs in a highly efficient manner. We present two new methods for 2-D convolution that offer significant reduction in power consumption and computational complexity. The first method computes convolution results using row-wise inputs, as opposed to traditional tile-based processing, yielding considerably reduced latency. The second method, single partial product 2-D (SPP2D) convolution, avoids recalculation of partial weights and reduces input reuse. Hardware implementation results are presented.